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A complete solution to the Mattis-Bardeen equations of the anomalous skin effect in 
superconductors [Phys. Rev. 111,412 (1958)] is presented in the case of plane, bulk 
conductors. This solution shows good agreement with existing solutions in the microwave 
region, and for the first time, it correctly describes measurements in the far-infrared region. It 
turns out that the solution to the Mattis-Bardeen equations for the extreme anomalous limit 
cannot be used for a correct description of experimental results. In addition, our exact solution 
is also applicable to strong-coupling superconductors. 

I. INTRODUCTION 

The theory of superconducting metals by Mattis and 
Bardeen 1 describes the electromagnetic behavior of super­
conductors in the weak-coupling limit. In a complete solu­
tion to this theory for plane, bulk superconductors, aU the 
information can be summarized in the surface impedance Z. 

Below the gap frequency, i.e., for photon energies fwJ 
lower than energy gap 2Ll, this may be shown by experiments 
on resonant cavities or strip lines. Here in the microwave 
region, good agreement exists between measurements on res­
onant cavities and calculations of solutions by Halbritter2 

and Turneaure.3 In the case of thin-film superconducting 
strip lines, much work has been done by Swihart4 and 
Kautz,5.6 taking into account the classic and the extreme 
anomalous skin effect. 

Above the gap frequency (1Uu > 2A) no exact solution to 
the Mattis-Bardeen theory has yet been published. Just after 
publication ofthis theory, MiUer7 presented an approximate 
solution containing the whole frequency region by using ex­
pansions in power series and neglecting the influence of the 
mean free path. But in most cases when measurement results 
of the absorption in bulk superconductors and the transmis­
sion through superconducting films were compared with 
theory, the much simpler solution of the extreme anomalous 
limit was applied. In the far-infrared region this had led to 
apparent discrepancies between theory and measurement, 
and these discrepancies have been thought to be due to the 

I 

strong-coupling nature of the superconductors. However, it 
will be shown that they are indeed due to the improper ap­
proximation to the Mattis-Bardeen theory. 

We begin the solution to the Mattis-Bardeen equations 
in Sec. II and the simplification of this solution to the ex­
treme anomalous limit in Sec. III. A comparison between 
some important experimental and theoretical results and the 
derived equations is treated in Sec. IV A for the microwave 
region and in Sec. IV B for the far-infrared region. 

Building on the present paper, we wish to present our 
experimental and more accurate theoretical results in the 
field of superconducting strip lines in another publication. 
This will be important for the correct calculation of integrat­
ed circuits such as voltage standards in our laboratory and 
may be of interest in the application of high-Tc supercon­
ductors. 

II. SOLUTION FOR THE BULK LIMIT 

As an expansion of the BCS description of superconduc­
tivity,8 the theory of Mattis and Bardeen j includes the fre­
quency dependence of magnetic fields. It provides a relation­
ship between the total current density J and the vector 
potential A: 

J(r) = 3 r RRA(r')J(w,R,T)e- RII dV' (1) 

4"rvoM io Jv R 4 ' 

with 

J(OJ,R,T) = -iTT rd 

[1 - 2f(E + mil) 1 [g(E) cos af:.z - j sin aLl2 ]e jaA
, dE 

)a- flw 

- frr l"" [1 - 2f(E + fUll)] [geE) cos aLl2 - j sin af:.2]e ja
t., dE 

+ jrr L'" [1 - 2f(E) J [geE) cos aA I + j sin af:.de- jaA
, dE, 

where LlJ=(E2_Ll2)1/2, A2 =[(E+1Uu)2_f:.2 ]1/2, 

geE) = (E 2 + fl? + fuuE)/(fl j A2 ), and a = R IUivo)' 
R = r - r' is the vector from the point for which the current 
density is to be calculated to the volume element dV' assum-

ing homogeneity. Vo = I IT is the Fermi velocity with I the 
mean free path of the electrons and r the relaxation time. 
The net effect of scattering is introduced by an extra factor of 
exp( - R II) into the kernel of the integral for the current 
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FIG. 1. Bulk and plane superconductor. 

density in Eq. (1). it is the Planck constant divided by 21T, 
J L 0 the London penetration depth at a T = 0 K described in 
Ref. 8, w the circular frequency, andf(E) = 1/[ 1 + exp(E I 
kB T)] the Fermi function with E the energy relative to the 
Fermi energy EF and kB the Boltzmann constant. 

Considering a plane, bulk superconductor with an inci­
dent plane wave as shown in Fig. 1, and introducing a one­
dimensional Fourier transformation for the current density 
and the vector potential, 

Jz (x) = J+oooo Jz (q)e jqx dq, 

f
+OO 

A z (x) = _ 00 A z (q)e jqx dq, (2) 

the Fourier component A z (q) can be removed from the inte­
gral in Eq. (1), leading to 

Jz(q) = -K(q)Az(q), (3) 

Re[i(w,xlq,T) 1 

which is a local relationship in Fourier space. 

For the Mattis-Bardeen kernel K(q) one finds 

3 100f+l K(q) = - ry (1 - u2 )I(o),R,T) 
41TlIolU LO 0 - 1 

(4) 

an equation already mentioned by Tinkham.9 

The integration with respect to u can easily be carried 
out. With 

J~ll (1 - u2)ejqRu du 

_ 4 (sin(qR) ( R») ---- -cos q 
(qR)2 \ qR 

(5) 

and the substitution qR = x the kernel K(q) becomes 

K (q) = - 3 2 f'''' (Sin} x _ co~ x ) 
1rllv~. LOq ~O X x 

XI(w,xlq,T)e-- x / ql dx. (6) 

Considering I«(JJ,xlq,T} in Eq. (1) we must make a distinc­
tion between w < 26, and w> 26,. At photon energies be­
low the energy gap, geE) goes to infinity at E = 11 - wand 
at E = 11. In the integration inteval from 11 - ku to i::l, the 
square root of III becomes negative and has to be replaced by 
±jli::l,!. At photon energies above the energy gap, g(E) ad­

ditionally goes to infinity at E = - i::l. The first integral of 
I(w,xlq,T) in Eq. (1) must therefore be split into two parts, 
and the square root of III is negative in the integration region 
from - Il to fl, 

Noting this and splitting I«(u,xlq,T) into real and 
imaginary parts we get 

_ 1T r-t. [1-2j(E+Iiw)}{[g(E) + l]sin(ax) _ [gee) -l]sin(a+x)}dE 
2 1-",," 

It. (E2 + 112 + wE .) .. -1T [l-lf(E+ku)] 2 ~ 1!2 2 2 t/? cos(a2x)+sm(a~) e u'XdE 
b.-IiM,t. (11 -E~) [(E+w) -i::l}- / 

+ 1T .coo [1-f(E) -f(E+ku)][g(E) -llsin(a+x)dE-1T I'"~ [feE) -f(E+iUu)j[g(E) + 1]sin(a-x)dE 

(7) 

and 

1m [I(w,xlq,T) 1 = +~ r 6. [1-2f(E+wv)]{[g(E) + 11cos(a~-x) + [g(E) -l]cos(a+x)}dE 
2 .It.-lim 

-1T 1"0 [feE) -j(E+wJJ)]{[g(E) + llcos(a-x) + [geE) -1]cos(a+x)}dE, 

! 

(8) 

with a+ = a j + 02' a- = 02 - aI' a 1 = i::l1/(Wofl), and 
a2 = 6,21 ( fwoq) . 

After l(w,xlq,n has been inserted into the Mattis-Bar­
deen kernel K(q), the foHowing integrals can be derived: 

Below the gap frequency (w < 2i::l), the first integrals 
in Eqs. (7) and (8) must be set to zero, and the lower inte­
gration limit of the second integral in Eq. (7) is A - w. 
Above the gap frequency aU integrals must be taken into 
account, and the lower limit of the second integral in Eq. (7) 
becomes - Ll.. 
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and 

roc b (sin x cos x ) Jo e-~ x 7 -~ cos(ax)dx = R(a,b) (9) 

lOC e hx(sinx cosx),< )d S( b) -3----2- 8m ax X= a, 
x' .x 

(10) 
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with b = 1/ ql. With the help of partial integration they can 
be transformed into tabulated integrals (Ref. 10 and 
Grobner and Hofreiterll ). The solutions are 

R (a b) = _!2. ~ In( b 2 + (1 + a) 2 ) 
, 2 + 4 b 2 + (1 - a)2 

+ 1 fl + b 2 _ a2
) [arctan( 2b ) 

4' b2+a2_1 

(11) 

a ab [ ( 2b ) ] S(a,b) = - - - arctan 2 2 + nx 1T' 
2 2 h+a-l 

Re[K(q) ] 

n = {O for b 2 + a2 
- 1 >0 . 

x 1 for b 2 + a2 
- 1 < 0 

With b = 0 (infinitely large mean free path l), Eqs. (11) and 
(12) are reduced to the corresponding equations published 
by Miller [Ref. 7, Eq. (13)]. Furthermore, he derived ap­
proximate formulas for the kernel K (q) for large and small 
q, expanding K(q) in power series. 

The solution of the exact kernel K(q) finally becomes 

= 3
2 

[rt. [1-2f(E+Iiw)] (2 2El~:t:.2+1iw~ 2 1/2 R(a2,a1 +b) +S(a2,al +b»)dE 
fWoA-Loq Jt.--liw,-A (Ll -E) [(E+Iiw) -6.] 

+! (t. [l-2f(E+ku)]{[g(E) + 1]S(a-,b) _ [geE) -1]S(a+,b)}dE 
Jl'1 Ii{v 

-f" [1-f(E) -f(E+ki»][g(E) -l]S(a+,b)dE+ f" [fee) -f(E+oo)][g(E) + l]S(a-,b)dE] (13) 

and 

1m [K(q)] = 3 (_~ r-A [1-2f(E+w)]{[g(E) + l]R(a-',b) + [geE) -1]R(a+,b)}dE 
IlvoA. Ioq - JA-llu, 

+ 1''' [feE) - fCE + w) H[g(E) + 1]R(a-,b) + [geE) - l]R(ar,b)}dE ), (14) 

which is identical with the result of Turneaure3 for the spe­
cial case of w < 2A. 

It can be shown that for the normal conducting state at 
T = Tc and 2L\ = 0, Eqs. (13) and ( 14) lead to the particu­
lar result given by Mattis and Bardeen!: 

(15) 

which corresponds to a kernel K n (q) in the normal conduct­
ing state: 

Kn (q) = ~32 
v Loq 

(16) 

with 

an = (J)lvoq, b = 1/ql. 

Having solved the Mattis-Bardeen kernel K(q) we are now 
able to calculate the surface impedance using an equation of 
Reuter and Sondheimer12 for diffuse scattering of the elec­
trons at the surface of the conductor. 

Z = j{J)tto1T 1 = R + jX 
fO'ln[ 1 + K(q)lrj]dq 

= R + j(j}ttoA.. (17) 

Calculations for specular scattering have not been car­
ried out in this paper, for both diffuse and specular scattering 
results are quite similar to each other and the produced sur­
faces seem to be more diffuse than specular. The surface 
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impedance Z contains aU the information about the surface 
material available from the Mattis-Bardeen theory. The sur­
face resistance R is a measure of conductor losses, and the 
surface reactance X is directly connected to the supercon­
ducting penetration depth A. 

III. EXTREME ANOMALOUS SKIN EFFECT 

In the case of the extreme anomalous skin effect, the 
mean free path should be much greater than the skin pene­
tration depth (/>8), and the Pippard coherence length de­
fined by 1/s = lIso + 1/al (a is the empirical constant) 
should be much greater than the superconducting penetra­
tion depth (S->}.). Mattis and Bardeen described this case 
by setting a = R = 0 in Eq. (1); therefore the kernel 
I((j),O,n follows as 

Re [1({J),O, T) ] 

= _ 1T' (A [1 _ 2f( E + ki> )] 
JA -Ito;, A 
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= 17 i~ lim [1 - 2f(E + fwJ) ]g(E)dE 

- 2rr L" [feE) - fCE + fzw) 19(E)dE (18) 

in the superconducting state, and as 

l(w,O,Te ) = - j1rlUu (19) 

in the normal conducting state. 
When J co IJ"oo is calculated in the extreme anomalous 

limit using the Mattis-Bardeen integral in Eg. (1), the cor­
respondingkernelsI(w,O,T) andI(w,O,Tc ) can be taken out 
of the integrals, and according to Glover and Tinkham 13 a 
complex conductivity is introduced: 

[(w,O,T) 0"1 -j0"2 

l(w,D,Te ) O"n 

(20) 

where 0"" is the conductivity in the normal conducting state 
at a given frequency. The kernels Koo (q) and K n ", (q) can 
then be written as 

K", (g) = _1. I((j),O;T) = ~ 17~() (0"2 + j!!l) 
4 f!VoIt Loq 4 volt LOg (Tn O"n 

and 

K () _ . 3 l7W 
noo q - J -4 12 

VO"LOq 

(21) 

(22) 

IV. APPLICATIONS TO BULK SUPERCONDUCTORS 

To calculate the surface impedance Z according to Egs. 
(17), (13), and (14), a numerical double integration has to 
be carried out, and five material parameters are needed: the 
energy gap 2L\.0 at T = 0 K, the London penetration depth 
A L 0 at T = 0 K, the mean free path l, the critical temperature 
Te , and the BCS coherence length 50 or the Fermi velocity 
vo, related to each other by 

So = 1tvolrrb.(). (23) 

The temperature dependence of the energy gap is also 
needed. Suitable values are obtained from Miihlschlegel's 
calculations 14 of the BCS temperature dependence or from 
the simple equation 

2L\. [ (rr 2 \] 1/2 
--= COSI-t) , 
2.6.0 \ 2 

(24) 

with t = T lTc, which deviates by only 2% from Miihlschle­
gel's tabulated values. 

If all these parameters are introduced into a FORTRAN 

computer program, the surface impedances can be calculat­
ed for any circular frequency w, for any mean free path I as 
long as only nonmagnetic impurities are involved, and for 
any temperature T. 

Important conditions for the validity of the present solu­
tion are that the superconductors must be isotropic, bulk, 
and plane and the theory of Mattis and Bardeen is only valid 
for weak-coupling superconductors. Despite the last restric­
tion a comparison of experimental and theoretical results 
shows that our solution to the Mattis-Bardeen equations is a 
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FIG. 2. (a) Superconducting penetration depth A vs mean free path I for PO 
at T = 4.2 K; curves calculated with material parameters from Tumeaure 
(Ref. 3) listed in Table I; x. Hasse and Lachmann (Ref. 15); 0, Henkels 
and Kircher (Ref. 16). (b) Surface resistance vs mean free path for PO at 
T=4.2K. 
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TABLE I. Material parameters. 

26.oIkn Tc T" (K) ALO (nm) 

Ph 4.10 7.19 30.8 
Pb 4.10 7.22 28.0 
Nb 3.80 9.20 33.3 
Al 3.25 1.178 15.4 
AI 3.37 1.178 16.0 

good approach, even for the strong-coupling case (see the 
following sections). 

A. Microwave region 

As mentioned in Sec. II, in the region below the gap 
frequency (mu < 2.6.) the present solution is identical with 
that of Tumeaure. 3 Halbritter2 also obtained an equivalent 
solution using a Green's function. Both theoretical results 
were able to describe measurements on resonant cavities in 
the microwave region correctly. For this reason we do not 
present here many experimental and theoretical results in 
the microwave region. As one example, Fig. 2 shows the 
dependence of the surface impedance Z on mean free path I. 

~ 
I 

R/Rn 

la! 

4 
! 

Alnm 

(bl 

1.0 

0.5 

0.0 
0.2 OJ, 0.6 0.8 1.0 

TIT,· {> 

FIG. 3. (a) RIRn vs TITe measured by Biondi and Garfunkcl (Ref. 18); 
0, O.Mke T,; /:,., 1.66kB Tc; *, 2.46kB Tc; X, 3.08kn T,; D, 3.63k" T,.; +, 
3.9IkB Tc ; curves calculated using parameters from Ref. 16 except 
2b.o=3.40kBTc; II, calculated by Miller (Ref. 7). (b) Superconducting 
penetration depth vs frequency calculated by Biondi and Garfunkel (Ref. 
19); *, t = 0; 6., t = 0.7; D, t = 0.8; 0, t = 0.9; curves calculated using pa­
rameters from Ref. 19 except 26.0 = 3.40kB Tc. 
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Do (l0" m/s) to (nm) 1 (nm) References 

0.60 99 710 3 
0.68 111 1000 25 
0.28 39 20 22 
1.34 1729 10000 19 
1.23 1500 co 7,8 

With increasing impurity content (decreasing mean 
free path I) the electromagnetic field penetrates more deeply 
into the conductor. This behavior is demonstrated by the 
solid line in Fig. 2(a), for lead at 4.2 K and 1 GHz, calculat­
ed with material parameters from Turneaure3 1isted in Table 
1. The course of the superconducting penetration depth at 
500 GHz (a frequency well below the gap frequency) is not 
much different from that at 1 GHz. Values measured by 
Hasse and Lachmann, 15 who used a lead cavity with up to 5 
at. % Hi at 9.58 GHz, are also included, as is a result of 
Henkels and Kircher!!> obtained with Pb-Hi thin-film strip 
lines below 30 MHz. 

At sufficiently low frequencies the surface resistance 
versus the mean free path shows a minimum at 1-;:::;5o, as has 
been noted and explained by Halbritter. 17 In Fig. 2 (b) this 
minimum appears at 1 GHz but not at 500 GHz, where R 
increases to 8.9X 10-7 n for 1 going to infinity. 

A second example containing the frequency region be­
low and above the gap frequency is shown in Fig. 3. Biondi 
and Garfunkel!8 measured the ratio R /Rn (R is the surface 
resistance in the superconducting state and R" the surface 
resistance in the normal conducting state at T = Tc) of alu­
minum over a wide range of frequency and temperature 
[ data symbols in Fig. 3 (a) ]. From the values obtained they 
calculated the frequency dependence of the superconducting 
penetration depth at different temperatures using Kronig­
Kramers integral transforms!9 [data symbols in Fig. 3 (b)]. 

The solid lines in Figs. 3 (a) and 3 (b) were obtained by 
using the material parameters given by Biondi and Garfun­
kel listed in Table I except the energy gap. This parameter 
was changed from (3.25 ± 0.1 )kB Tc to 3AOkB Tc and 
3.91 knTc. 

Trying to fit the experimental results of Biondi and Gar­
funkel, Miller? used a similarly large energy gap 2~() of 
3.37kB Tc and parameters quite similar to those of Biondi 
and Garfunkel as listed in Table I, thus obtaining a similar 
good fit to the experiment, except to the regions at low tem­
peratures and frequencies at the gap frequency [data points 
in Fig. 3 ( a) ] . 

This can be seen in Fig. 4, where r/r 00 is drawn versus 
the photon energy fwJ in units of k B Tc . r corresponds to R / 
R nand roo = R", / R" 00 is the appropriate quotient in the 
extreme anomalous limit. Larger discrepancies between 
Miller's approximate solution (dashed lines) and the pres­
ent solution (solid lines) appear at lower temperatures and 
frequencies around the gap frequency. 

Unfortunately, there still remain some smaller devia­
tions at low temperatures and frequencies at the gap frequen-
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FIG. 4. Frequencydependenceofrlr", r = R IR", r x = R.x / R" " for AI; 
material parameters taken from Miller (Ref. 7); -, exact calculation; ... , 
Miller's calculation. 

cy, perhaps caused by anisotropy effects of the energy gap or 
measuring errors. This temperature and frequency range is 
also important for describing the measurement results of the 
absorption in bulk superconductors in the next section, 
where the present solution is well able to fit the experimental 
data on lead, lead alloys, and niobium specimens. 

8. far~infrared region 

Many attempts have been made to fit the Mattis-Bar­
deen theory in the extreme anomalous limit (Sec. un to 
experimental results in the far-infrared region for bulk mate­
rial and thin films, but considerable discrepancies arose. The 
question to what extent this limit can be used for aluminum 
is also answered in Fig. 4. If the curves of r / r w (r = R / R n , 

r", = Roo / R" 00 ) reach a value of 1, the extreme anomalous 
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PIG. 6, Absorption spectrum of Pb-TI I at. %; *, measured points from 
Leslie and Ginsberg (Ref 20); - -, extreme anomalous limit; """, local limit; 
---, calculated by Ginsberg (Ref. 21) using Leplaes theory (Ref, 22); -, 
exact calculation with material parameters from Turneaure (Ref. 3); 
2~o·~ 4.332kn To 1= 170 nm, K 4,673, T = 1.3 K, 

limit can be applied without error. Even for aluminum, 
which fulfills the conditions for the extreme anomalous limit 
quite wen (see Sec. HI and Biondi and GarfunkeI 19

), ac­
cording to Fig, 4 a satisfactory application is possible only at 
high frequencies and temperatures slightly lower than Tc. 

In the case of lead, in Fig. 5 the deviations from the 
extreme anomalous limit become even larger, As shown, ap­
plication of the extreme anomalous limit is off scale for pho­
ton energies below 6,Okn Tc (corresponding to frequencies 
below 900 G Hz). Similar curves for Sn calculated by Miller 
(Fig. 4 of Ref. 7) decrease continuously with increasing fre­
quency and show no peaks at the gap frequencies, The disap­
pearance of these peaks is a result of the interpolation in 
calculating the shape of the kernel K (q) between small and 
large q.9 

Leslie and Ginsberg20 measured the far-infrared absorp­
tioon in bulk lead alloys. The data points in Fig. 6 show the 
result for Pb--Tl 1 at. %, The worst fit is obtained in the 
extreme anomalous limit (long-dashed line), and the local 
limit (short-dashed line) does not give a much better result. 

Ginsberg21 later tried to fit his experiment with the help 

FIG, 5, Frequency dependence of r/r" for 
Pb; material parameters taken from Tur­
neaure (Ref. 3); -"", corresponding gap fre­
quencies. 
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~ 
1 0.5 

p 

n(J.)/2iJ ~::.,. 

FIG. 7. Absorption spectra for two diluted Pb specimens: Pb-B1 0.01 
at. %; 0, Pb-Bi 6 at. %, measured by Leslie and Ginsberg; -, 
2Ao = 4. 362kB Te. 1=9400 nm, K = 6.803; ---, 2t.o = 4.40kB To 1= 16 
nm, K = 2.915; other parameters taken from Turneaure T= 1.3 K. 

of Leplae's theory22 (long- and short-dashed line in Fig. 6). 
The principle ofthis evaluation is to calculate Im[K(q)] in 
Eq. (14) at T = 0 K by neglecting the second integral, to 
obtain Re[K(q)] by a Kramers-Kronig transform, and to 
calculate the surface impedance using Eq. (17). The only 
important difference to our calculations seem to be that the 
second integral in Eq. (14) is not considered, while taking 
T = 0 K is quite well justified. 

The solid line in Fig. 6 was obtained using Ginsberg's 
formula for the absorption formula 

R -R p= n 

R,,(wg ) +R/K' 
(25) 

where R" (Wg) is the surface resistance in the normal con­
ducting state at the gap frequency and K is chosen so that the 
height of the absorption curve at Wg is unity. It should be 
mentioned that we used no fitting parameter and the same 
value of K for this. Apart from the energy gap, Tumeaure's 
material parameters for lead, which work well in the micro­
wave region, and the mean free path measured by Leslie and 
Ginsberg20 were used. 

The measured absorption at frequencies below the gap 
frequency in Fig. 6 is not reproduced by the theory. Precur­
sor peaks as in Fig. 6 have been observed in the absorption 

R/Rn 

FIG. 8. Absorption spectra measured by Noonan (Ref. 25): *. Pb; 0, Nb; 
-, 2tl.o =4.3IkB To parameters taken from Turneaure (Ref. 3); ---. 
2ao = 3,6QkB Teo 1=9 nm; parameters taken from Bauer, Giordano, and 
Hahn (Ref. 27); ---, extreme anomalous limit. 
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and transmission spectra ofPb and Hg (Richards and Tink­
ham23 and Ginsberg and Tinkham24), and in one case de­
scribed by assuming a second energy gap (Norman2s

). In a 
later paper Norman and DouglassZ6 showed that their mea­
sured precursor peaks were spurious and due to the unex­
pected presence of higher-order radiation in the beam of 
their monochromator. They suggested that a small amount 
of higher-order radiation was present also in other experi­
ments; therefore all reported precursor peaks may be caused 
by artifacts. 

Figure 7 also shows two experimental results obtained 
by Leslie and Ginsberg on a weakly and a strongly diluted 
specimen, again taking the measured values of 26.() and I, 
without using a fitting parameter. 

The values measured by Norman25 oflead and niobium 
above the gap frequency in Fig. 8 are also well described by 
the Mattis-Bardeen theory. For lead we again took all the 
material parameters ofTurneaure except the measured ener­
gy gap. For niobium we took an the parameters from Bauer, 
Giordano, and Rahn27 listed in Table I except the measured 
energy gap and the mean free path I, which was changed 
from I = 20 nm to I = 9 nm to get a better fit. This value 
corresponds with that estimated by Norman. 

Bauer, Giordano, and Hahn used the parameters in Ta­
ble I to describe their measurement results at a cavity 
between 1.7 and 7.8 GHz, and it should be mentioned that 
they observed a small but definite discrepancy of the fre­
quency dependence between experiment and exact theory; 
this can be explained by using a continuously increasing en­
ergy gap (Philipp and Halbritter28

). 

The solution to the Mattis-Bardeen equations in the ex­
treme anomalous limit can only be used at very high frequen­
cies. The approximate solution of Miller? fails at low tem­
peratures and frequencies surrounding the gap frequency, 
just in that region where absorption and transmission mea­
surements are performed. 
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FIG. 9. Frequency dependence of the skin penetration depths A and 8" 
parameters taken from Wilson (Ref. 30), 
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As shown above, the solution to the Mattis-Bardeen 
equations is wen qualified to describe measurement results 
of absorption spectra in the far-infrared region and also 
those of strong-coupling superconductors such as lead and 
lead alloys. Good agreement between measurements and 
calculations of lead in the microwave region have been re­
ported by Turneaure3 and Bruynseraede et al.29 Concluding 
this section, we are justified in showing the frequency depen­
dence ofthe formally defined skin penetration depths 

(26) 

8 r = R /wfto (27) 

for lead at 1,6 and 4.2 K in Fig. 9. The material parameters 
used to calculate these curves were taken from Wilson30 (Ta­
ble I) and are quite similar to those of Turneaure. 

The curves for A vs w/CkB Tc) show maxima at fre­
quencies somewhat higher than the gap frequencies and 
reach the London penetration depths AI. at very high fre­
quencies. Below the gap frequency, the or values remain 
small, increase strongly above the gap frequency, and finally 
reach the temperature-independent limit predicted by the 
theory of the anomalous skin effect in normal conductors by 
Chambers.31 That is, the Mattis-Bardeen theory includes 
the Chambers theory, as it has to. 

V. CONCLUSION 

The equations for the surface impedance of supercon­
ductors derived by Mattis and Hardeen are precisely solved 
for bulk conductors. This complete calculation shows very 
good agreement with measurements, not only in the micro­
wave region but also in the far-infrared region, above the gap 
frequency, where the extreme anomalous limit cannot be 
used. 

As shown before in the microwave region the absorption 
of bulk material consisting of strong-coupling superconduc­
tors can be described by using 6,jkB Tc >2, although strictly 
speaking, the Mattis-Bardeen theory is only valid in the 
weak-coupling limit. 

It has thus been shown that the exact solution to the 
Mattis-Baraeen theory describes the electromagnetic prop­
erties of superconductors for all frequencies, temperatures, 
and mean free paths (as long as only nonmagnetic impurities 
are involved), even for strong-coupling superconductors. 
Five material parameters are needed: the energy gap, the 
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critical temperature, the London penetration depth, the Fer­
mi velocity (or the BCS coherence length), and the mean 
free path. 
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